The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation.
نویسندگان
چکیده
A polyubiquitin chain anchored to the substrate has been the hallmark of proteasomal recognition. However, the degradation signal appears to be more complex and to contain also a substrate's unstructured region. Recent reports have shown that the proteasome can degrade also monoubiquitylated proteins, which adds an additional layer of complexity to the signal. Here, we demonstrate that the size of the substrate is an important determinant in its extent of ubiquitylation: a single ubiquitin moiety fused to a tail of up to ∼150 residues derived from either short artificial repeats or from naturally occurring proteins, is sufficient to target them for proteasomal degradation. Importantly, chemically synthesized adducts, where ubiquitin is attached to the substrate via a naturally occurring isopeptide bond, display similar characteristics. Taken together, these findings suggest that the ubiquitin proteasomal signal is adaptive, and is not always made of a long polyubiquitin chain.
منابع مشابه
Regulation of TGF-β signal transduction by mono- and deubiquitylation of Smads.
Polyubiquitylation leading to proteasomal degradation is a well-established mechanism for regulating TGF-β signal transduction components such as receptors and Smads. Recently, an equally important role was suggested for monoubiquitylation of both Smad4 and receptor-associated Smads that regulates their function without protein degradation. Monoubiquitylation of Smads was discovered following t...
متن کاملGeneration of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملCdc20 directs proteasome-mediated degradation of the tumor suppressor SMAR1 in higher grades of cancer through the anaphase promoting complex
The Tumor suppressor SMAR1 (scaffold matrix attachment region binding protein 1) has a crucial role in maintaining genomic stability, cell cycle progression and apoptosis.Our previous finding showed that it is highly suppressed in higher grade of cancer. However, the underlying mechanism of this suppression was not well understood. In this study, we show that SMAR1 expression levels are control...
متن کاملN4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies.
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal ...
متن کاملPeripheral endoplasmic reticulum localization of the Gp78 ubiquitin ligase activity.
Gp78 (also known as AMFR and RNF45) is an E3 ubiquitin ligase that targets proteins for proteasomal degradation through endoplasmic reticulum (ER)-associated degradation (ERAD). In this study, we showed that gp78-mediated ubiquitylation is initiated in the peripheral ER. Substrate monoubiquitylation and gp78 CUE domain integrity restricted substrate to the peripheral ER, where CUE domain intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cell
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2012